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SUMMARY

This paper employs one-point, linear eddy viscosity and differential second-moment (DSM) turbulence closures
to predict the turbulent characteristics of both rectilinear and circular tidal ¯ows. The numerical scheme is based
on a ®nite volume approach applied to a non-staggered grid such that all ¯ow variables are stored at one and the
same set of nodes. Numerical stability is maintained through the implementation of apparent viscosities and
source term linearization, which are essential if eddy viscosity terms are absent. A stable algorithm is devised for
the Reynolds stresses which includes a non-linear velocity smoothing in order to stabilise the numerical scheme
during ¯ow reversal and relaminarization. Favourable agreement with the experimental rectilinear tidal data of
SchroÈder (Tech. Rep. GK55 87/E=16, GKSS-Forshungszentrum Geesthacht, 1983) and McClean (Turbulence and
Sediment Transport Measurements in a North Sea Tidal Inlet (the Jade), Springer, New York, 1987, p. 436) is
reported. Numerical calculations of circular tidal ¯ows are also presented which were motivated by the
preliminary investigations of Davies and Jones (Int. j. numer. meth. ¯uids, 12, 17 (1991)) and Davies (Continental
Shelf. Res., 11, 1313 (1991)), who employed the one-equation, k l, eddy viscosity turbulence model to simulate
rectilinear and circular tidal ¯ows. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A major source of turbulence produced in the near-bed region of shallow homogeneous seas is due to

¯uid motions over rough sea beds. This turbulence is primarily generated by currents associated with

wind-, tide- and wave-induced motions.1,2 The enhanced physical effects of the generated turbulence

include faster mixing and momentum rates, increased bed stress and higher levels of energy. In

general these factors cannot be ignored by coastal engineers who are interested in predictions of

sediment transport, pollutant redistribution, bed erosion and coastal defence.

In large-scale three-dimensional hydrodynamic models of tidal ¯ow3 a slip bottom boundary

condition is applied at a height 100 cm above the bed where the bed stress is related to the slip
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velocity Ub at the bottom boundary by t � rC100U 2
b , where r is the density of the ¯uid and C100 is the

drag coef®cient evaluated at 100 cm above the bed. This drag coef®cient is a function of the bed

roughness and is affected by the presence of small-scale bed features. These small-scale features

cannot be resolved by large-scale models which might cover areas extending over many hundreds of

kilometres. Hence the effect of these small-scale features can only be parametrized in large-scale

models. The appropriate value of C100 can in principle be determined through detailed modelling of

the near-bed turbulence.

To date, numerical investigations of both rectilinear and circular tidal ¯ows have been limited to

the simplest linear eddy viscosity turbulence models. Davies and Jones1 applied the one-equation k l

model to investigate the effects of wind and tidal ¯ows on the turbulent boundary layer. Furthermore,

Davies4 examined the in¯uence of eddy viscosity in both rectilinear and circular tidal ¯ows. Baumert

and Radach5 applied the two-equation k e model to rectilinear tidal ¯ows and found that the results

compared favourably with the experimental data of SchroÈder6 and McClean.7 However, it is well

known that isotropic eddy viscosity models fail to resolve individual Reynolds stresses and do not

capture the anisotropic Reynolds stress distribution in the vicinity of the bed. For example, the

simulations of Sajjadi and Aldridge8 of a steady ¯ow traversing a stationary sand ripple demonstrate

quite clearly that linear eddy viscosity models have dif®culty in resolving the effects of streamwise

curvature, which can either suppress or augment the relative levels of the Reynolds stresses. Since

curved asymmetrical bed forms are frequently observed in near-shore shallow water regions and the

effect of the Coriolis parameter is very in¯uential in coastal engineering simulations, it may be

tentatively suggested that when the effect of the Coriolis force is important, such as in the case of

circular tides considered here, then linear eddy viscosity models may be inadequate to resolve the

complex turbulent properties (such as the individual components of Reynolds stresses, since the

Coriolis parameter enters into their transport equations) of ocean dynamics accurately.

A large proportion of such calculations hitherto have utilized a form of eddy viscosity model to

represent the turbulent transport. In these approaches the Reynolds stresses are linearly related to the

mean rate of strain via an eddy viscosity, and while this is often capable of providing reasonable

results, it does have serious limitations. For instance, in the case of circular tides it is incapable of

reproducing the effects due to the Coriolis force, which acts to either augment or suppress individual

components of Reynolds stresses and cannot easily be embodied in an eddy viscosity formulation.

Thus, to incorporate the effect due to rotation accurately, a more detailed description of the turbulent

transport is required, such as the full differential second-moment closure (DSM) adopted here.

Although eddy-viscosity-type models have proven to work well in shear-stress-dominated wall-

bounded ¯ows of engineering interest, there are many examples of situations in which they produce

predictions that are far from the experimental results. One example is the case of rotating channel

¯ow which was studied in detail by Launder et al.9 The principal conclusion was that eddy viscosity

two-equation models predict a symmetrical pro®le as in the case of non-rotating ¯ow. This study

displayed the inability of such models to handle the effects of rotation, on the individual components

of Reynolds stresses, in an adequate way. Models based on the transport equations of the Reynolds

stress tensor (DSM) closures have prerequisites for a better accommodation of the underlying physics

of such ¯ows. For a review on the subject the reader is referred to Reference 10. In the present paper

we will consider DSM closure schemes for the transport of Reynolds stresses uiuj and the total

dissipation rate e.
The traditional prescription of boundary conditions for tidal ¯ows (and rough oscillatory boundary

layers in general) has been based on the key assumption that in the near-bed region the ¯ow is always

fully rough with fully developed turbulence. Therefore the transport equations are integrated directly

down to the no-slip boundary condition, since it is assumed the effect of viscosity are generally small.

Nevertheless, the preliminary calculations of Sajjadi and Waywell11 (who investigated oscillatory
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¯ows driven by wind waves of period t � 10 s) indicate that in the context of oscillatory boundary

layer ¯ows this assumption may not always be valid over the entire phase cycle (particularly during

the early stages of ¯ow acceleration and around ¯ow reversal). However, this work demonstrated that

wind-induced and tidally induced (T � 12 h) ¯ows share many common features, including

(i) hysteresis effects of turbulent energy due to the turbulence-bursting phenomenon which

occurs shortly after pressure gradient reversal12,13

(ii) the existence of a logarithmic region above the bed similar to that observed in steady channel

¯ow.12

Important differences between these types of ¯ow are also evident, the main features being as

follows:

(i) The maintenance of fully developed turbulence across the majority of the ¯ow cycle is often

observed in tidal problems. For example, Hamilton et al.14 estimate that the Celtic Sea

remains fully turbulent across 85% of the ¯ow cycle.

(ii) Turbulent energy generated in the near-bed region in tidal ¯ows is often diffused further away

from the bed than in wind-wave-induced ¯ows. This usually means that the observed turbulent

boundary layer is not fully developed when it reaches the free surface, particularly in shallow

water areas.

In the present paper we discard the traditional approach to boundary conditions in favour of slip

boundary conditions, based on roughness-dependent wall functions,8 which explicitly take into

account the nature of the bed (be it hydraulically smooth, transitional or fully rough). In Section 6 we

will make repeated reference to the `near-wall' region. This of course refers to the near-bed ¯ow

region strictly above the semiviscous region where the high-Reynolds-number turbulence closures are

no longer valid.

The numerical integration of the transport equations is based on a fully conservative, collocated

®nite volume scheme. However, the implementation of second-moment closure models with such a

scheme leads to numerical instability owing to decoupling of the mean velocity and Reynolds

stresses. This problem is overcome by adopting the concepts of apparent viscosity15 and source term

linearization.16 However, one might ask, in particular with reference to the rectilinear tide, why one

should adopt such a complicated scheme for a relatively simple problem. To answer this question, we

should note that oscillatory ¯ows, with or without rotation, are potentially unstable. The reason is that

in these ¯ows, through the action of shear layer instability, turbulence is generated in the near-wall

region during the early phases of ¯ow acceleration and is continuously diffused away towards the

freestream region. However, a favourable pressure gradient suppresses the creation of turbulence.

Following pressure gradient reversal, turbulence begins to grow violently and explosively at the bed

and is sustained by turbulence bursting. As the pressure gradient becomes increasingly adverse,

however, the ¯ow relaminarizes. Aldridge17 adopted a simple ®nite difference scheme for oscillatory

¯ows and found that the scheme becomes very unstable during the stages of ¯ow reversal,

particularly when the ¯ow relaminarizes. This has certainly been our experience too. Thus, to

circumvent this dif®culty, we have adopted the scheme originally developed by Lien and

Leschziner15 and included a non-linear velocity smoothing (see Section 4) in order to stabilise the

scheme during ¯ow reversal and when the ¯ow relaminarizes.

Another interesting problem in an oscillatory ¯ow is the question of transition. Does transition to

turbulence occur in the ®rst acceleration stage of oscillatory boundary layer ¯ows? If so, what are the

effects of the turbulence generated at the bed? Both these important questions must be addressed by

coastal engineers who need to consider the extra stresses and momentum generated by turbulence that

contribute to sea bed and coastal erosion, sediment transport and pollution redistribution. Although
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information on the laminar±turbulent transition process for oscillating boundary layer ¯ows over both

smooth and rough surfaces has been obtained experimentally, it is perhaps surprising that the

mathematical modelling of the transition process is still quite poor. Numerical investigations of

turbulent oscillatory boundary layers have recently received much attention; amongst others the

recent work of Waywell and Sajjadi18 is worth noting. Although good agreement with experimental

data has been reported by these authors, e.g. capturing the general features of oscillatory ¯ow, the

subtle details of transition, particularly in the transitional phases, have so far proved to be a

challenging task from the traditional one-point closure point of view.

2. MODEL EQUATIONS

The linearized, hydrodynamic boundary layer equations can be expressed as19

r
@U

@t
ÿ 2rOW � @P

@x
� @

@y
m
@U

@y
ÿ ruv

� �
; r

@W

@t
� 2rOU � ÿ @P

@z
� @

@y
m
@W

@y
ÿ rvw

� �
; �1�

where y represents the vertical co-ordinate and the mean velocities U and W denote the Cartesian x-

and z-components of the current respectively. The kinematic ¯uid viscosity n � 1�0� 10ÿ6 m2 s71

and the Coriolis parameter O � 6� 10ÿ5 s71 are both assumed to be constant. At the edge of the

boundary layer the mean velocity pro®les at time t vary sinusoidally as

U � U1 sin�ot�; W � W1 sin�ot�; �2�
where U1 and W1 represent the mean freestream velocities and o � 2p=T is the frequency, T being

the tidal period of oscillatory motion which is of the order of 12 h. In the freestream region the

pressure gradient approximately balances the temporal velocity acceleration such that

@P

@x
� ÿU1ro cos�ot ÿ fx�;

@P

@z
� ÿW1ro cos�ot ÿ fz�: �3�

From equations (3) we de®ne F � fx ÿ fz, which denotes the phase difference between the x- and z-

forcing motions. If the boundary layer height is small compared with the vertical length scale, then it

can be assumed that equations (3) are also valid in the boundary layer.

In order to solve equations (1), the Reynolds stresses uv and vw must be determined a priori. In the

present investigation two closure schemes are adopted. The ®rst is based on the eddy viscosity

concept in which the Reynolds stresses are related to mean rates of strain such that

uv � ÿnt

@U

@y
; vw � ÿnt

@W

@y
; �4�

where nt is the eddy viscosity given by the relationship8

nt � cmk2=e �5�
and cm � 0�09. The turbulent kinetic energy k is calculated from the transport equation8

@k

@t
� @

@y

nt

sk

@k

@y

� �
ÿ Pkk

2
ÿ e; �6�

while the turbulent energy dissipation rate e depends on the choice of model. For the one-equation

k l model, e is calculated from the empirical relationship8

e � c3=4
m k3=2=ky: �7�
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However, in the two-equation k e model employed here, e is calculated from its own transport

equation

@e
@t
� @

@y

nt

se

@e
@y

� �
ÿ 1

2
�ce1Pkk ÿ 2ce2e�

e
k
: �8�

The model constants are given in Table I.

The second scheme adopted here is based on the exact equation governing the transport of

Reynolds stresses uiuj. Consider the exact second-moment equations expressed in Cartesian tensor

form as20
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where Fi is a body force per unit mass. In accordance with tradition, equation (9) has been reduced to

six distinct physical processes denoted by shorthand symbols corresponding to stress convection Cij,

production Pij, body force interactions Gij, diffusion dij, pressure-strain redistribution fij and viscous

dissipation eij. Stress convection, production and (linear) body force effects may be treated as exact

terms since they contain velocity correlations up to at most uiuj. However, the remaining terms

require alternative mathematical treatments in order to close the above exact equation. Beginning

with dij which represents stress transport due to turbulent motions, the term can be conveniently

subdivided into three processes corresponding to velocity-driven diffusion uiujuk due to ¯uctuating

velocity components, pressure-driven diffusion �p=r��djkui � dikuj� through the action of pressure

¯uctuations and molecular diffusion n@uiuj=@xk . At high Reynolds numbers, molecular diffusion is

assumed to be negligible and the net transport of the velocity- and pressure-driven processes is

habitually modelled collectively. The model adopted for dij in the present work is the isotropic

proposal of Shir:21

dij �
@

@xk

Cm

sk

k2

e
@uiuj

@xk

� �
: �10�

The above model for dij supports the hypothesis that stress diffusion is driven by stress gradients.

Note that equation (10) is not rotationally invariant, since the symmetry of the indices is not

preserved on interchanging either i or j with k. However, the general belief is that the contribution of

Table I. Eddy viscosity model constants

k sk se ce1 ce2

0�4 1�0 1�3 1�45 1�92
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the diffusive term to the stress budget is minimal and hence (10) is chosen on the basis of numerical

convenience rather than accuracy.

The complex interaction of ¯uctuating strain and pressure, fij, is an important process in equation

(9) because it generally provides the main balance to the production terms. Since fkk � 0, it is clear

that the pressure±strain term serves to redistribute energy between all the stress components but does

not alter the level of turbulent kinetic energy. The basic model employed in the present work is best

interpreted by dividing the pressure±strain interaction into four distinct physical processes, i.e.

fij � ÿc1eaij|���{z���}
fij1

ÿc2�Pij ÿ 1
3
dijPkk�|��������������{z��������������}
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� cw
1 �e=k��ukumnknmdij ÿ 3

2
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2
ukujnkni�f|������������������������������������������{z������������������������������������������}
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� cw
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2
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2
fjk2nkni�f|�������������������������������������{z�������������������������������������}

fw
ij2

:

�11�

Terms fij1 and fij2, frequently referred to as the `return-to-isotropy' and `rapid' parts of the pressure±

strain process, tend to isotropize the turbulent and mean ®elds respectively. Pressure re¯ections from

the boundary are modelled by terms fw
ij1 and fw

ij2. The model adopted in equation (11) is based on the

proposal of Gibson and Launder.22 The resultant wall `echoing' is responsible for the transfer of the

bed normal stress to bed parallel stresses and thus the process introduces a measure of near-bed stress

anisotropy. The strength of the wall re¯ection terms is determined from the factor f, given by

equation (31) below, which represents the ratio of the local length scale �L � k3=2=e� to the normal

distance from the bed, y. Terms ni denote the unit vector normal to the bed, where ni � �0; 1; 0� for a

¯at bed. Craft and Launder23 recently derived a new form for fw
ij2 with special reference to impinging

jets:

fw
ij2 � ÿ

�
0�08
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� 0�1kalm
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� ��
k3=2

cley
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where cl � 2�5 and aij is the dimensionless stress invariant given by

aij � uiuj=k ÿ 2
3
dij: �13�

In practice the Craft and Launder23 term has the effect of reducing the near-bed levels of k; u2 and uv
whilst increasing the levels of v2, as was demonstrated by Sajjadi and Aldridge.8

At high-Reynolds-number turbulence the dissipation rate of turbulent energy can be assumed to be

locally isotropic and thus we may write

eij � 2
3
dije: �14�

Following Launder et al.20, e is derived from its own transport equation

@e
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� @

@y
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se

k2

e
@e
@y

� �
� 1

2
�ce1Pkk ÿ 2ce2e�

e
k
: �15�

The model constants for the DSM closure model are given in Table II.
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The stress generation Gij associated with rotation needs special treatment in DSM closure schemes.

If the co-ordinate frame is rotated, an effective (linear) source term

Gij ÿ 2Ok�ujumeikm � uiumejkm� �16�
enters the Reynolds stress transport equations, where Ok is the co-ordinate rotation tensor and eijk is

the unit alternating tensor such that eijk is �1 if ijk are in cyclic order, ÿ1 if ijk are in anticyclic order

and zero otherwise. In the present form the substantial convective derivative in equation (9) is not

materially invariant under a rotation of axes. To circumvent this dif®culty, we follow the suggestion

of Takhar and Thomas24 and incorporate half the rotation `generation' in the convection term, i.e.

C0ij �
Duiuj

Dt
ÿ 1

2
Gij; �17�

and the remaining part is added to the mean strain and rotational parts of fij. We thus infer that

f0ij2 � fij2 � fij3 � ÿc2�Pij � 1
2

Gij ÿ 1
3
dijPkk�; �18�

since Gkk � 0, which implies that there is no direct turbulent energy created by the rotation. Note

incidentally that this approach suggests that in applying the idea of isotropization of production to

rotating systems, the effective generation associated with rotation is only half as great relative to

shear generation as indicated by equation (9). Finally, following Launder et al.,9 the pressure

re¯ection term is modelled as

fw
ij2 � cw

2 �f0km2nknmdij ÿ 3
2
f0ik2nknj ÿ 3

2
f0jk2nkni�f : �19�

3. NUMERICAL IMPLEMENTATION

The computational procedure for the governing transport equations is based on the fully conservative,

collocated (non-staggered) ®nite volume framework such that all ¯ow variables are stored at one and

the same set of nodes. However, the implementation of second-moment closure models with such a

scheme poses serious problems, particularly for models which are not based on the eddy viscosity

concept. In the absence of eddy viscosity terms the collocated variable arrangement can cause

decoupling of the mean velocity and Reynolds stresses, leading eventually to oscillatory solutions or

even divergence of iterative solution algorithms. In the present paper the concept of apparent

viscosity is adopted which circumvents the aforementioned Reynolds stress=mean velocity

decoupling.

The transport equations governing the mean and turbulent ®elds may be cast in the form

@�rf�
@t
ÿ @

@y
Gf
@f
@y

� �
ÿ Sf � 0: �20�

In equation (20), f represents any of the mean velocities, Reynolds stresses, turbulent kinetic energy

or dissipation rate, Gf is an isotropic diffusivity and Sf contains all source=sink terms, including

Reynolds stresses, mixed derivatives, constant pressure gradient terms (in the momentum equations)

and Coriolis terms (see equations (38) and (39) below). Equation (19) is integrated over a control

Table II. DSM model constants

Cm sk se ce ce1 ce2 c1 c2 cw
1 cw

2

0�065 0�81 1�0 0�15 1�45 1�92 1�8 0�6 0�5 0�3
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volume, as shown in Figure 1, which yields a balance of face ¯uxes and a volume-integrated net

source.

In this scheme the transient term is approximated by the ®rst-order one-sided difference simply to

enable a time-marching solution. The cross-diffusion term is evaluated by bilinear interpolation,

while the source term is discretized using single-point quadrature and is linearized as

Sf � SPfP � SU; �21�

where SP are contributions to the source term which are strictly positive. Integrating (20) gives

r�yfP � �1ÿ y�fo
P�
Dy

Dt
� Gf

@f
@y

� �
n

ÿ Gf
@f
@y

� �
s

� SfDy: �22�

Here fo
P is the value of fP at the previous time step and

Gf
@U

@y

� �
n
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fN ÿ fP

�dy�n
; �23�

Gf
@U

@y

� �
s

� Gs

fP ÿ fS

�dy�s
: �24�

Substituting (23) and (24) in (22), we obtain

ry
Dy

Dt
� Gn

�dy�n
� Gs

�dy�s
ÿ SPDy

� �
fP �

Gn

�dy�n
fN �

Gs

�dy�s
fS � SUDy� �yÿ 1�Dy

Dt
fo

P; �25�

which may be expressed in the form

AN � AS ÿ SPDy� ry
Dy

Dt

� �
fP � ANfN � ASfS � SUDy� �yÿ 1�Dy

Dt
fo

P: �26�

Following Patankar,16 we set y � 1, which ensures that the numerical scheme is fully implicit and

therefore unconditionally stable regardless of the choice of the time step Dt. The resulting algebraic

expression for f yields a tridiagonal matrix equation of the form

APfP* �
P

i

Aifi*� B; i � N; S; �27�

Figure 1. A typical control volume
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where the coef®cients are

AN �
Gn

�dy�n
; AS �

Gs

�dy�s
; A0

P �
rDy

Dt
ÿ SPDy;

B � SUDy; AP � AN � AS � A0
P:

�28�

Face diffusivities are evaluated by linear interpolation using neighbouring nodes on either side of any

face being considered. Since the grid is non-staggered, checkerboard oscillations arise if face

velocities are linearly interpolated between related pairs of adjacent nodes. A correct treatment of cell

face velocities is given in the next section; see equation (46).

4. NUMERICAL STABILITY

As mentioned in the previous section, the stability criterion is a serious dif®culty in ®nite volume

solvers, particularly those based on a fully collocated arrangement and non-diffusing discretization.

The dif®culty arises from the absence of eddy viscosity terms and a numerical decoupling of stresses

from the related strains. This problem was ®rst addressed by Lien and Leschziner,15 who extracted

apparent viscosities from the partial differential equations governing the transport of Reynolds

stresses. To illustrate this technique, consider the uv transport equation which can be expressed as

C12 ÿ d12 � ÿaÿ b� �P12 � f12 � a� b�: �29�
Terms a and b can be derived from the Reynolds stress equation represented in the general form

r
@C
@t
ÿ @

@y
s22

@C
@y

� �
� a1P11 � a2P22 � a3P12 � a4Pkk �

re
k
�a5u2 � a6v2 � a7uv� � a8re; �30�

where C denotes the Reynolds stress components and s22 � csk
2=e. The coef®cients ai are given in

Table III.

In Table III, fy � n2
2 f , where

f � c3=4
m k3=2=eky: �31�

The spanwise Reynolds stress w2 is excluded from Table III since it is calculated through the

relationship

w2 � 2k ÿ �u2 � v2�: �32�

Table III. Coef®cients ai in equation (30)

ai u2 v2 uv

a1 1ÿ c2 0 0
a2 ÿc2cw

2 fy 1ÿ c2 � 2c2cw
2 fy 0

a3 0 0 1ÿ c2 � 3
2

c2cw
2 fy

a4
1
3
�c2 � c2cw

2 fy� 1
3
�c2 ÿ 2c2cw

2 fy� 0

a5 ÿc1 0 0
a6 cw

1 fy ÿc1 ÿ 2cw
1 fy 0

a7 0 0 ÿc1 ÿ 3
2

cw
1 fy

a8
2
3
�c1 ÿ 1� 2

3
�c1 ÿ 1� 0
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Apparent viscosities for the uv Reynolds shear stress component can be extracted from equation (29)

by setting

a � e
k
�c1 � 3

2
cw

1 fy�uv; �33�

b � �1ÿ c2 � 3
2

c2cw
2 fy�v2

@U

@y
: �34�

Substituting (33) and (34) in (29) gives upon rearrangement

ÿuv � k

e
C12 ÿ d12 ÿ �P12 � f12 � a� b�

c1 � 3
2

cw
1 fy

� k

e
1ÿ c2 � 3

2
c2cw

2 fy

c1 � 3
2

cw
1 fy

v2|����������������{z����������������}
n12

@U

@y
: �35�

Apparent viscosities for the other Reynolds stress components can be derived following a path

analogous to equations (29)±(35). The ®nal result can be summarized as

nij �

1ÿ c2 � 3
2

c2cw
2 � fi � fj�

c1 � 3
2

cw
1 � fi � fj�

ku2
j

e
for i 6� j;

2ÿ 4
3

c2 � 2
3

c2cw
2 � fi � fj�

c1 � 2cw
1 fi

ku2
i

e
for i � j �no summation�:

8>>>><>>>>: �36�

In the above expression, fi and fj vary according to the value of i and j respectively:

fi; fj � 1; i; j � 2;
0; otherwise:

�
�37�

Insertion of the above viscosities �mij � rnij� into e.g. the momentum equation augments stability,

since the cell face velocities also become functions of the normal stresses. Thus iteration into the U-

momentum equation gives

GU � m11; SU � ÿ
@P

@x
ÿ @

@y
�ruv� ÿ 2rOW ; ruv ruvÿ m12

@U

@y
: �38�

Similarly, insertion into the W-momentum equation yields

GW � m13; SW � ÿ
@P

@z
ÿ @

@y
�rvw� � 2rOU ; rvw rvwÿ m13

@W

@y
: �39�

Clearly the concept of apparent viscosities is only useful if the normal Reynolds stresses u2
i remain

positive at all times. This can be achieved through careful discrimination between positive and

negative components of the source terms:

Sf � SU � SPu2
i ; �40�

where SU contain positive terms while SP accommodates strictly negative ones. Any term which does

not contain u2
i as a multiplier is ®rst divided by the value of u2

i available from the previous iteration

level and then added to SP. The product SPu2
i is ®nally added to the main diagonal of the matrix in

order to increase diagonal dominance and hence numerical stability.

As mentioned in the previous section, since the grid is collocated, checkerboard oscillations arise if

a linear interpolation is used to approximate cell face velocities or Reynolds stresses in terms of nodal
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values. To overcome this dif®culty, a non-linear interpolating scheme is used. For the purpose of

illustration, consider the discretized form of the transport equation for uv at location P (see Figure 1):

uvP �
P

i

Aifi � S0U

AP|���������{z���������}
HP=AP

� mP
12�Un ÿ Us�P

Dy
; i � N; S; �41�

where

mP
12 �

1ÿ c2 � 3
2

c2cw
2 fy

c1 � 3
2

cw
1 fy

kv2

e

 !
P

DyDt

AP

: �42�

The term S0U includes fragments of diffusion, production and the pressure±strain process. Analogous

expressions for uvN and uvn are

uvN �
HN

AN

� mN
12�Un ÿ Us�N

Dy
; �43�

uvn �
Hn

An

� mn
12�UP ÿ UN�

Dy
; �44�

with

mn
12 � 1

2
�mP

12 � mN
12�;

Hn

An

� 1

2

HP

AP

� HN

AN

� �
: �45�

In equations (41) and (44) the north face velocity Un is given by

Un � �1ÿ f �y �
AP

An

�UP ÿ �1ÿ a�UP*� ÿ a
r=Dt

An

U o
P

� �
� f �y

AN

An

�UN ÿ �1ÿ a�UN*� ÿ a
r=Dt

An

Uo
N

� �
� �1ÿ a�Un*� a

r=Dt

An

U o
n ; �46�

with a similar expression for Us. In equation (46), UP* represents the value of UP at the previous

iteration, a is the underrelaxation parameter and f �y � �yn ÿ yP�=�yN ÿ yP�. Equation (44) becomes

uvn � 1
2
�uvP � uvN�|���������{z���������}

linear interpolation

� 1

2Dy
��mP

12 � mN
12��UP ÿ UN� ÿ mP

12�Un ÿ Us�P ÿ mN
12�Un ÿ Us�N�|���������������������������������������������������������{z���������������������������������������������������������}

non-linear smoothing;

�47�
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with an analogous expression for uvs. The above practice of extracting apparent viscosities is to

enhance iterative stability by increasing the magnitude of the diagonal coef®cient AP. To generalize

the practice to unsteady ¯ow and include underrelaxation, (47) is further modi®ed as

uvn �
1

2

AP

An

uvP �
AN

An

uvN

� �
� �1ÿ a� uvn ÿ

1

2

AP

An

uvP �
AN

An

uvN

� �� �

� a
�rDy=Dt�nuv0

n ÿ 1
2
��rDy=Dt�Puv0

P � �rDy=Dt�Nuv0
N�

An

� a mn
12

UP ÿ UN

Dy
ÿ 1

2
mP

12

�Un ÿ Us�P
Dy

� mN
12

�Un ÿ Us�N
Dy

� �� �
: �48�

5. BOUNDARY CONDITIONS

The turbulence models presented in Section 2 are based on the key assumption that the local

Reynolds number Rt��k2=ne� remains high over the entire ¯ow domain. Inevitably there are near-

bed, semiviscous ¯ow regions which damp turbulence signi®cantly and thus reduce Rt. Such regions

must therefore be bridged via an alternative model. To date, many workers1,4,17 have integrated the

transport equations straight to the bed and applied the no-slip condition at a suitable roughness height

Z0. To implement this strategy, it is argued that for rough boundary layer ¯ows the near-bed,

semiviscous region is so thin in comparison with the roughness element that it does not in¯uence the

¯ow ®eld. For example, Aldridge17 set z0 � 2=3d � ks=30, where d is the sand grain diameter and ks

is the Nikuradse sand grain roughness. However, in the context of oscillatory boundary layer ¯ows

(over a rough or a smooth surface) the ¯ow does not always remain fully turbulent in all phases of

oscillation, particularly around ¯ow reversal and during the early stages of ¯ow acceleration.11,18

This fact seriously questions the validity of the traditional boundary conditions. Therefore in the

present work this approach is abandoned in favour of the roughness-dependent wall function

approach originally proposed by Sajjadi and Aldridge.8 This approach explicitly takes into account

the nature of the ¯ow at the bed (be it hydraulically smooth, transitional or fully rough).

The present wall function approach relies on the assumption that the near-wall region lying

between the wall and the near-wall computational node N is represented by two layers. The lower one

is a fully viscous region and the upper one is a fully turbulent layer where the velocity pro®le has the

form

U � Ut

k
ln

y

y0

� �
; �49�

where k � 0�4 is the von Karman constant, Ut � �tw=r�1=2 is the friction velocity and tw represents

the wall shear stress. The vertical distance y is taken from the base of the sand grains and the

parameter y0 is determined by the state of the bed roughness. If the velocity scale in the log-law

region is proportional to k1=2, the form of y0 is given by

y0 � m=Erc1=4
m k1=2 �50�

The roughness parameter E varies according to the state of the bed roughness25 and is evaluated

following Krishnappen26 by the expression

E � exp�kBs�=k�s ; �51�
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where k�s � Utks=n. Here Bs is determined empirically through the relationship

Bs�k�s � � �5�5� 2�5 ln k�s � exp�ÿ0�062�ln k�s �3� � 8�5f1ÿ exp�ÿ0�062�ln k�s �3�g; �52�

which represents an excellent ®t to the experimental data of Nikuradse27 as was originally

demonstrated by Sajjadi and Aldridge.8 The value of turbulent kinetic energy at the wall is governed

by the balance between volume-integrated production and dissipation. It must be evaluated in a

manner consistent with the log-law variation in the cell. If the point N is assumed to be in the log-law

region, then the wall shear stress may be expressed as

tw �
rk

1=2
N C

1=4
m k

ln�Eyk
1=2
N n�U: �53�

Near the wall the coef®cient Cm is obtained from the modelled Reynolds stress equations, by

assuming local equilibrium and setting fy � 1, as

Cm �
1ÿ c2 � 3

2
c2cw

2

c1 � 3
2

cw
1

v2
N

kN

� 0�065: �54�

The value of turbulent kinetic energy in the wall-neighbouring control volumes is calculated by

introducing the same assumptions in its transport equation, with the modi®cation that the diffusion to

the wall is set to zero, i.e. �@k=@y�s � 0.

However, a different methodology is applied for the near-wall values of Reynolds stresses. The

treatment adopted here involves prescribing the value of all stresses at the near-wall node. Following

Lien and Leschziner,15 values for Reynolds stresses are derived by focusing on the stress equations

applicable to local equilibrium, Pkk � 2re, and setting the wall distance function f � 1. Thus we

obtain

b
u2 � k�4c1 � 2c2

1 ÿ 4c1c2 � 2c1c2cw
2 � 6cw

1 � 6c1cw
1 ÿ 6cw

1 c2�
3c1�c1 � 2cw

1 �
� 1�098k;

bv2 � 2k�c1 � c2 ÿ 2c2cw
2 ÿ 1�

3�c1 � 2cw
1 �

� 0�247k;

ÿbuv � k
1ÿ c2 � 3

2
c2cw

2

c1 ÿ 3
2

cw
1

2�c1 � c2 ÿ 2c2cw
2 ÿ 1�

3�c1 � 2cw
1 �

 !s
� 0�255k;

where, for example, buv is the value of the Reynolds shear stress at the wall.

Finally, the near-wall dissipation is not obtained from the solution of its transport equation in the

bed-adjacent node. Instead, a treatment consistent with the log-law assumption is made which

involves the evaluation of eN from

eN � c3=4
m k

3=2
N =kyN: �55�

At the top boundary the following conditions are applied:

@U

@y
� @W
@y
� @k
@y
� @e
@y
� @u

2

@y
� @v

2

@y
� uv � 0: �56�

REYNOLDS STRESS TURBULENCE MODELLING FOR TIDAL FLOWS 263

# 1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 251±280 (1998)



However, for the rectilinear tidal ¯ow calculations a wind-free surface condition for e is applied

according to the proposal made by Rodi:28

e�H; t� � �kc
1=2
m �3=2

k�H ÿ y� bH� : �57�

In equation (57), H is the water depth and b � 0�07 is an empirical constant determined by Hossain.29

Furthermore, following McClean,7 it is assumed that the pressure in the momentum equations is

replaced by the free surface elevation Z according to

dZ
dx
� ÿrgSmax cos�ot�; �58�

where g � 9�81 m s72 denotes the gravitational acceleration and Smax is the maximum surface slope.

Initial conditions for the mean and turbulent variables are all set to zero and the calculations are

performed over ®ve tidal cycles in order to ensure that the ¯ow has reached the fully periodic state.

6. RESULTS

6.1. Comparisons with Rectilinear Tidal Flows; W � 0

In general the in¯uence of the Earth's rotation cannot be neglected in tidal ¯ow problems.

However, in an initial series of calculations presented here we will consider two rectilinear tidal

problems which neglect the effects of rotation. This situation may be approximated in a narrow

channel or an estuary where the tidal motion is reduced to one direction only and a second

perpendicular, co-planar mean velocity cannot develop. In this subsection we compare both linear

eddy viscosity and DSM models with the experimental data of SchroÈder6 (Elbe estuary) and

McClean7 (Jade estuary). The important experimental parameters are presented in Table IV.

Here the Reynolds number Re � U1H=n is based on the current velocity U1, the water column

depth H and the kinematic viscosity of the ¯uid, n. Furthermore, Smax denotes the maximum surface

slope, while d is the roughness diameter of the particles.

6.1.1. Model comparisons with Jade estuary experimental data. Since the numerical scheme is

fully implicit in time, the stability of the scheme is guaranteed regardless of the time step. In all the

presented rectilinear tidal calculations the period was T � 12�42 h and the time step increment was

set to Dt � 75 s, while the number of grids in the vertical direction was N � 60. The grid spacing was

based on a geometric progression with geometric ratio rc � 1�04 such that close to the bed the mesh

was tightly packed. This was motivated by the presence of sharp gradients in the near-bed region

which require a high mesh line density in order to be resolved adequately.

The Nikuradase roughness length was set to ks � 5� 10ÿ3 m, the same value used in the k e
predictions of Baumert and Radach.5 This value was calculated from the approximate empirical

relationship ks � 2�5d corresponding to a roughness diameter of d � 0�2 cm.

Figure 2(a) compares eddy viscosity predictions for normalized current velocity pro®les U=Umax

(measured at h � 2�14 m above the estuary bed) against normalized time t=T based on an arbitrary

Table IV. Experimental data for rectilinear tidal ¯ows

Estuary Smax d (cm) U1 (m s71) H (m) Re

Elbe6 561075 2 0�94 5�1 56106

Jade7 261075 0�2 1�07 20 2�26107
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Figure 2. Normalized current velocity predictions of Jade estuary: (a) Ð, k l; ± ± ±, k e; (b) Ð, DSM-IP; ± ± ±, DSM-CL;
h� , experimental data of McClean7 measured at h � 2�14 m above bed of estuary
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time axis with the experimental data of McClean.7 The term Umax corresponds to the maximum

velocity of the ¯uid at h � 2�14 m above the bed along the half-cycle. We note that the eddy viscosity

predictions are in excellent agreement with experimental data along the range 04 t=T 4 0�5,

capturing the maximum at t=T � 0�25 very closely. Figure 2(b) compares the same experimental data

with DSM predictions for normalized current velocity against normalized time, once more

represented on an arbitrary time axis. The distinction between the DSM models is based on the choice

of the pressure±strain term fw
ij2. For brevity, computed DSM values which employ the Gibson and

Launder22 proposal (equation (11)) will herein be referred to as the DSM-IP model. Similarly, DSM

results which apply the Craft and Launder23 term (equation (12)) will be denoted by DSM-CL. The

DSM proposals capture the experimental pro®le closely, including the maximum positioned at

t=T � 0�25, around which time the velocity at the free surface is also at its maximum value.

Experimental predictions of the normalized turbulent stress t=tmax (again measured at h � 2�14 m

above the Jade estuary bed) are compared with eddy viscosity and DSM models in Figures 3(a) and

3(b) respectively, where the abscissa represents a normalized time scale plotted on an arbitrary time

axis. Here t is based on the Reynolds shear stress, t � ÿruv, and tmax denotes the maximum value of

t across the range 0�04 t=T 4 0�5 at height h � 2�14 m. We note excellent agreement with

experimental observations particularly in the vicinity of the maximum value of t=tmax. Also, the time

difference (or time lag) between the experimental current velocity and Reynolds shear stress pro®les,

estimated to be 1 h at ¯ow reversal, is captured satisfactorily by all models. Minor improvements are

noted for the DSM predictions in the time range 0�04 t=T 4 0�25. However, it is inevitable that the

experimental data presented in Figures 2 and 3 have been measured a considerable distance away

from the bed. Therefore, although the above predictions are very good, no ®rm conclusions can be

made concerning the relative strength of the turbulence models.

For the remainder of this subsection we will concentrate on mean and turbulent ®eld predictions by

the DSM-IP and DSM-CL models over the time range 04 t 4 5�69 h. For convenience this time

range is subdivided into two tidal stages corresponding to (a) the ®rst acceleration stage

04 t 4 2�59 h and (b) the ®rst deceleration stage 3�11 < t 4 5�69 h. The acceleration and

deceleration stages are also divided into six time stations which display the time instant (in hours)

under consideration.

Current velocity pro®les U predicted by the DSM models show during the ®rst acceleration stage

that the boundary layer is initially small but grows. However, it is unclear whether the boundary layer

is fully developed or not during the late time stations of the ®rst acceleration stage. Differences

between the DSM-IP and DSM-CL models are only signi®cant during the early time stations of the

®rst acceleration stage, whereas during the late time stations of the acceleration stage they are small.

After pressure gradient reversal (at t � 3�1 h) the current velocity pro®les begin to decelerate and

again minor differences between the DSM models develop.

From predictions for Reynolds shear stress pro®les we see that in the ®rst acceleration stage the

turbulence builds up sharply in the near-bed region owing to shear layer instability30,31 and is

constantly diffused upwards towards the free surface. At t � 3�11 h we note an almost linear variation

in ÿruv along the entire depth, as was noted earlier by Davies and Jones.1 This is in direct contrast

with high-frequency waves driving the ¯ow (e.g. wind waves of period T � 8 10 s), where the

Reynolds shear stress decays rapidly as the freestream region is approached.1,11 This suggests that the

diffusion process for tidal ¯ows is more dominant that observed in wind wave simulations. In the

time range 2�074 t 4 5�69 h it is clear that signi®cant levels of turbulent energy are present in the

vicinity of the free surface, suggesting that the turbulent boundary layer is not fully developed in this

time interval. During the ®rst deceleration stage the increasingly adverse pressure gradient destroys

turbulent energy, eventually leaving it evenly dispersed along the depth of the estuary at the ®nal time

frames.
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Figure 3. Normalized turbulent stress predictions of Jade estuary: (a) Ð, k l; ± ± ±, k e; (b) Ð, DSM-IP; ± ± ±, DSM-CL;
h� , experimental data of McClean7 measured at h � 2�14 m above bed of estuary
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Turbulent kinetic energy predictions for the DSM-IP and DSM-CL models across the half-cycle

are presented in Figures 4(a) and 4(b). The ®gures are a good example of the near-bed build-up of

turbulent energy and its constant diffusion towards the free surface observed during the acceleration

stage of tidal ¯ows. With the onset of pressure gradient reversal the initial time frames of the

deceleration stage indicate that high near-bed energy levels are sustained owing to the turbulence-

bursting phenomenon,13 leading to hysteresis in the turbulent energy cycle.12 Furthermore, the

Figure 4. Turbulent kinetic energy predictions along height of Jade estuary: (a) ®rst acceleration stage; (b) ®rst deceleration
stage; Ð, DSM-IP; ± ± ±, DSM-CL
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variation in the k pro®les at these time stations between the bed and free surface is approximately

linear. However, as the pressure gradient becomes increasingly adverse, turbulent kinetic energy is

dissipated until at t � 5�69 h it becomes evenly diffused through the depth of the estuary. In addition,

we note that high levels of turbulent energy are not recorded across the entire half-cycle. This is

probably due to the very small sand grain diameter, d � 0�2 cm, which does not induce enough drag

for the ¯ow to remain fully turbulent at all time stations of the half-cycle.

Computed values of the normal Reynolds stresses u2, v2 and w2 show that each Reynolds stress

component follows the salient trends of the turbulent kinetic energy, including (a) the build-up of

energy in the near-bed region during the ®rst acceleration stage and (b) its dissipation during the ®rst

deceleration stage, eventually becoming evenly diffused along the cross-section of the estuary.

Predictions for u2 by the DSM-IP and DSM-CL models are in general very similar. However, we note

that during the late time stations of the ®rst acceleration stage the DSM-CL model predicts

approximately three times as much near-bed component energy for v2 as the DSM-IP model.

Conversely, the DSM-IP model predicts approximately twice as much near-bed component energy

for w2 as the DSM-CL simulation. This is consistent with the observations of Waywell and Sajjadi,18

who noted that the Craft and Launder23 pressure±strain wall re¯ection term fw
ij2 directed more energy

to v2 (mainly from w2� compared with the predictions of the Gibson and Launder22 proposal.

6.1.2. Model comparisons with Elbe estuary experimental data. SchroÈder's6 experimental current

velocity pro®les measured at h � 1�9 m are plotted against time and compared with linear eddy

viscosity and DSM predictions in Figures 5(a) and 5(b). Note that once again the time axis is

arbitrary. Although comparisons between numerical results and experimental data are good, it is

interesting to note that the three maxima observed in the experimental predictions occur at different

magnitudes, largely owing to the higher-order tidal harmonics observed in naturally occurring tides.

This is in contrast with the eddy viscosity predictions, where all maxima are of equal size. Since the

present simulations are forced only with the semidiurnal harmonic D2 of period t � 30� h71, large

discrepancies are noted in some parts of the ¯ow cycle, particularly around t � 12 14 h.

Variations in turbulent kinetic energy against time for the linear eddy viscosity and DSM models

and experimental data (again measured at h � 1�9 m above the estuary bed) are compared in Figures

6(a) and 6(b). The experimental data again demonstrate three maxima of varying size, a feature which

remains unresolved by the eddy viscosity models. Nevertheless, comparisons between experimental

data and eddy viscosity predictions are satisfactory. Here we note that the present k e predictions are

similar to the k e simulations of Baumert and Radach.5 Furthermore, the time lag between the

current pro®les and turbulent kinetic energy predictions observed around ¯ow reversal is also well

reproduced by all models and is again estimated to be approximately 1 h.

We next consider the variation in the normal Reynolds stress components with time (again

recorded at h � 1�9 m above the estuary bed). Beginning with the DSM-IP predictions, we note that

along the ¯ow cycle the dominant Reynolds stress is u2, followed by w2 and then v2. Again the DSM-

IP model predicts the maxima at the same height throughout the time cycle, since the ¯ow is driven

only by semidiurnal harmonic forcing. Compared with the DSM-IP model, the DSM-CL model

predicts similar levels of u2 along the time cycle. Signi®cant differences arise, however, in the DSM-

CL predictions of v2 and w2, which remain at similar levels at all times during the DSM-CL

simulation. It appears that the DSM-CL model increases the v2 distribution by extracting component

energy from w2. Similar pressure±strain mechanics was observed for the Jade estuary calculations.

Furthermore, like the comparisons with experimental data from the Jade estuary (Figures 2 and 3), the

model parameters were not tuned and are not in fact identical to those employed in previous wind

wave numerical simulations.11,18
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Figure 5. Current velocity predictions of Elbe estuary: (a) Ð, k l; ± ± ±, k e; (b) Ð, DSM-IP; ± ± ±, DSM-CL; h� ,
experimental data of SchroÈder6 meeasured at h � 1�9 m above bed of estuary
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Figure 6. Turbulent kinetic energy predictions of Elbe estuary: (a) Ð, k l; ± ± ±, k e; (b) Ð, DSM-IP; ± ± ±, DSM-CL; h� ,
experimental data of SchroÈder6 measured at h � 1�9 m above bed of estuary
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From current velocity pro®les predicted by the DSM models through the depth of the Elbe estuary,

like the Jade estuary (Figure 3), it is unclear whether the turbulent boundary layer is fully developed

when it reaches the free surface. Also noteworthy are minor differences between DSM-IP and DSM-

CL predictions along the time range.

Predictions for Reynolds shear stress pro®les show high-shear layers in the near-bed region where

most of the turbulence is generated. During the fully turbulent time stations �04 t 4 2�07 h and

6�214 t 4 8�28 h) the Reynolds shear stress pro®les vary linearly along the length of the estuary.

This feature was also observed in the numerical simulations of Davies and Jones.1 Furthermore, the

DSM-CL model predicts greater shear stress levels in the near-bed region than the DSM-IP

model.11,18

Results for turbulent kinetic energy pro®les show that the highest levels of turbulent energy are

generated at the bed and are continually diffused upwards towards the free surface. The ®gures also

indicate that apart from the time frames t � 4�14 and 10�35 h the Elbe estuary retains high levels of

turbulent energy for the majority of the ¯ow cycle.

Minor discrepancies between the DSM models are noted away from the bed, where the DSM-CL

model predicts greater levels of turbulent energy than the DSM-IP results. This trend was also

observed in the Jade estuary turbulent kinetic energy predictions in Figure 4.

6.2. DSM-IP predictions of a circular tidal ¯ow; O � 6� 10ÿ5 sÿ1

The effect of the Earth's rotation cannot in general be neglected in tidal ¯ow calculations. In open

sea regions one must solve the coupled system of partial differential equations given by (1),

introducing a second current velocity W which lies in the same two-dimensional plane as U. In the

analysis below we compare DSM-IP predictions for a circular tidal ¯ow with a numerical simulation

previously reported by Davies,4 who applied the one-equation k l model as well as two modal

models to the same tidal problem. In the same paper the no-slip current velocity boundary condition

was set at the roughness length Y0. The important parameters for the circular tide simulation are given

in Table V.

In the present simulations a value for d (and hence ks � 2�5d� was evaluated through the empirical

relationship Y0 � 2
3

d � ks=30.17 In addition, a phase difference between the forcing motions was

assumed, namely the W-current forcing led the U-current forcing by F � 45�. It was further assumed

that the tidal period was T � 12 h. Beginning with the current velocity pro®les, Figure 7 presents

DSM-IP predictions for U plotted along the depth of the estuary, h, across the ¯ow cycle

04 t 4 11 h, subdivided into (a) the ®rst half-cycle 04 t 4 5 h and (b) the second half-cycle

64 t 4 11 h. Like the rectilinear simulations, it is unclear whether the turbulent boundary layer is

fully developed or not during the entire ¯ow cycle. It is evident, however, that at the free surface the

U-velocity is very close to its freestream value U1 � 1�0 m s71. Figures 8(a) and 8(b) display the W-

current velocity pro®les plotted against depth along the ¯ow cycle. The W-velocity boundary layer

extends up to the free surface, just exceeding its freestream value there, W1 � 1�0 m s71.

Table V. Parameters for circular tidal ¯ow test case

U1 (m s71) W1 (m s71) H (m) Y0 (m)

1�0 1�0 10 0�01
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Figure 7. Streamwise current velocity predictions U along height of simulated open sea region across ¯ow cycle 04 t 4 11 h:
± ± ±, DSM-IP
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Reynolds shear stress pro®les plotted against depth are shown in Figures 9(a) and 9(b). The ®gures

follow the qualitative trends reproduced in the rectilinear simulations, namely (a) the strong build-up

of turbulence in the near-bed region and (b) its migration towards the free surface, resulting in a linear

distribution along the depth of the estuary.

Like the Reynolds shear stress pro®les, the highest levels of uw are seen in the vicinity of the bed.

The DSM-IP predictions suggest that the maximum value of uw near the bed is several times larger

Figure 8. Spanwise current velocity predictions W along height of simulated open sea region across ¯ow cycle 04 t 4 11 h:
± ± ±, DSM-IP
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than the maximum value of uv. This may be associated with the fact that P13 �
ÿuv@U=@yÿ vw@W=@y extracts energy from both current velocity ®elds, while P12 � v2@U=@y has

energy inputs from the U -current velocity only. Furthermore, the near-wall levels of uw are not

suppressed by pressure pulsations re¯ecting from the estuary bed.

Figure 9. Reynolds shear stress predictions for uv along height of simulated open sea region across ¯ow cycle 04 t 4 11 h:
± ± ±, DSM-IP
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In the case of vw the maximum energy levels are found near the bed. Diffusion away from the bed

towards the free surface is also captured in accordance with other shear stress predictions. In general

the variation in vw with depth is generally linear across the ¯ow cycle.

Like the shear stress pro®les, the highest levels of turbulent energy occur in the near-bed region.

Diffusion moves some energy towards the free surface during both half-cycles, but the energy pro®les

do not vary linearly along the depth. In the present DSM-IP simulation the maximum value of k

generated in the near-wall region across the ¯ow cycle is approximately 25% less than the analogous

simulation of Davies4 (which employed the Vager and Kagan32 mixing length hypothesis). Since

signi®cant levels of k are present in the vicinity of the free surface, it is clear that the turbulent

boundary is not fully developed along the depth of the estuary.

Predictions for the normal Reynolds stress u2; v2 and w2 re¯ect the salient trends observed in the

turbulent kinetic energy pro®les, particularly the strong near-wall build-up of energy and non-linear

distribution with depth. We note that the maximum values of u2 and w2 are almost identical, while v2

is much smaller since its near-bed values are suppressed by the action of pressure re¯ections.

6.3 Harmonic analysis

The above circular tide simulation is identical to a test case cited by Davies4 and therefore to

complete the analysis we will compare the higher harmonics of the tidal ¯ow predicted with the

present DSM model, in particular the semidiurnal period denoted by D2 (period 30� h71) and third-

harmonic frequency D6 (period 90� h71). These harmonics were generated by a Fourier analysis after

the ¯ow had reached the fully periodic state. The results are presented in Table VI.

Table VI compares three turbulence closures employed by Davies4 (where the mixing length is

based on the time-dependent Vager and Kagan32 proposal) with the present DSM-IP predictions.

Model TKE represents the one-equation k l model with 50 grids in the vertical direction, while

modal�hU � and modal�U 2� are spectral models with 10 modes in the vertical direction which have the

advantage of being computationally inexpensive compared with traditional eddy viscosity models.

Furthermore, Davies' simulations investigate the effect of the speci®ed time-invariant function L�y�
which weights the time-varying mixing length through the vertical. From Table VI it is evident that

the Vager and Kagan32 mixing length proposal predicts the free surface currents to be far less than

their steady inviscid values U1 � W1 � 1�0 m s71. On the other hand, the DSM-IP predictions

suggest that at the free surface the U-current velocity is slightly smaller than U1 � 1�0 m s71, while

the W-current velocity slightly exceeds W1 � 1�0 m s71. This suggests that compared with the DSM-

IP results the TKE model boundary layer is more turbulent as was deduced in Section 6.2, where we

recall that the near-bed DSM-IP turbulent kinetic energy results were 25% less than the Davies4

predictions.

Discrepancies between the Davies4 and DSM-IP predictions for the phase angle variation along the

vertical, g�, are noted though. However, although corresponding values of g� at the different heights

do not match, it is interesting to note that through the vertical direction all harmonics vary by similar

amounts regardless of the choice of model. Undoubtedly all the differences noted thus far have to be

attributed to the increased model sophistication applied in the present work.

To check whether the discrepancies noted above were genuine we calculated the higher harmonics

of a simple test case, namely a rectilinear ¯ow driven by a high-frequency wind wave. Once more the

effects of rotation were neglected. The ¯ow parameters are listed in Table VII. The D2 harmonics are

presented in Table VIII.

Here the third-harmonic frequency D6 is not presented since it is vanishingly small along the depth

of the estuary. Table VIII validates the present work, since we note that at the free surface the U-

current velocity matches its freestream value U1 � 1 m s71 exactly at g� � 90�. These observations
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Table VI. Vertical variation in tidal currents at periods D2 and D6 computed by Davies (TKE, modal(hU) and modal(U2)) and present DSM-IP model. All
velocities are quoted in cm s71

Water depth h� 10 m (Vager and Kagan32 mixing length)

Davies,4 L�y� � 1 Davies,4 L�y� parabolic

Velocity h (m) TKE g� Modal (hU) g� Modal (U2) g� TKE g� Modal(hU) g� Modal(U2) g� DSM-IP g�

10�0 68 197 67 198 65 199 77 198 74 199 73 199 87 1
U �D2� 1�0 48 197 48 197 46 198 49 198 48 198 47 199 67 0

0�1 25 197 25 197 24 198 25 198 25 199 24 199 47 0

10�0 4 71 4 67 5 59 4 78 4 72 5 63 3 327
U �D6� 1�0 1 67 2 65 3 56 2 72 2 69 3 60 2 324

0�1 Ð Ð Ð Ð Ð Ð Ð Ð 1 68 1 59 1 325

10�0 53 130 52 130 52 129 61 130 57 130 58 129 105 71
W �D2� 1�0 38 130 37 129 37 129 39 130 37 130 38 128 81 70

0�1 20 130 19 130 19 129 20 130 20 130 20 128 55 70

10�0 3 353 3 344 5 335 4 359 3 338 5 339 4 44
W �D6� 1�0 2 349 2 342 3 333 2 353 2 346 3 337 3 11

0�1 1 348 1 342 1 333 Ð Ð Ð Ð 1 336 1 33
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are consistent with a freestream boundary condition for the current velocity U � U1 sin�ot�, which

would usually be the appropriate condition for such a ¯ow (as opposed to a zero-¯ux condition).

Finally, 99% of the water column is represented by the inviscid solution, a similar value to that

observed in the simulations of Davies and Jones.1

7. CONCLUDING REMARKS

In this paper we have examined both rectilinear and circular tidal ¯ows. The numerical integrations

were based on a fully collocated ®nite volume arrangement which was stabilized through apparent

viscosities15 and source term linearization.16 In the circular tidal ¯ow calculations a numerical

procedure was described ensuring that the substantial derivative in the second-moment equations (9)

was materially invariant.

Initial calculations were based on two rectilinear ¯ows, a situation which may be observed in a

narrow channel or an estuary where the tide is constrained to one direction only. Both the linear eddy

viscosity and DSM models were in very good agreement with the experimental data of McClean7

(Jade estuary) and SchroÈder6 (Elbe estuary). The phase lag between the current velocity and turbulent

®eld was resolved satisfactorily by all turbulence models for both test cases. However, the different-

size maxima observed in the experimental data for turbulent kinetic energy pro®les in the Elbe

estuary were not captured. This was a direct consequence of the simulated ¯ow being driven only by

the semidiurnal harmonic D2 of period 30� h71. Inevitably though, both sets of experimental data

were measured far away from the estuary bed and therefore comparisons with numerical results

cannot indicate the relative strength of the turbulence models.

Vertical variations in turbulent variables were also investigated through DSM-IP and DSM-CL

simulations which employed two variations of the pressure±strain wall re¯ection term fw
ij2. The

salient features observed in rectilinear tidal ¯ows included

(i) the extension of the boundary layer right up to the free surface during most of the ¯ow cycle

(ii) near-bed build-up of turbulence during the ¯ow acceleration stage and its slow decay in the

¯ow deceleration stage due to an increasingly adverse pressure gradient

(iii) a linear variation of Reynolds shear stress pro®les with depth during the fully developed

turbulent ¯ow stages

(iv) the even distribution of turbulence through the water column at the end of the deceleration

stage.

Table VIII. Vertical variation in wind wave currents at
D2. All velocities are quoted in m s71

Velocity h (m) DSM-IP g�

10�0 100 90
U �D2� 1�0 100 90

0�1 100 90

Table VII. Flow parameters of benchmark simulation

U1 (m s71) T (s) H (m) Y0 (m)

1�0 8 10 0�01
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The above remarks have also been observed in References 1 and 4. Furthermore, it was noted that

turbulent boundary layers generated by tides were quite different from those created by high-

frequency wind wave motions.11,18 Some physical similarities were present, including the strong

production of turbulence energy in the near-bed region and similar pressure±strain mechanics,

notably higher levels of v2 redistributed from the component w2 by the Craft and Launder23 term for

fw
ij2. However, tidal boundary layers were found to extend right up to the free surface, where

signi®cant levels of turbulence energy were observed in the simulations. Furthermore, the diffusion

energy away from the bed is much more signi®cant for tidal ¯ows (compare the present calculations

with References 1, 11 and 18).

In the second part of the results section, circular tidal ¯ows were simulated which required the

solution of the two-equation system (1) and therefore included the effects of rotation through the

Coriolis parameter. The calculations were based on a DSM model with the Gibson and Launder22

wall re¯ection term. Following Takhar and Thomas,24 the Reynolds stress equations were ®rst

manipulated to ensure that the convection derivative Cij was invariant. The forcing terms @P=@x and

@P=@z were also assumed to be out of phase by 45�. Mean velocity pro®les showed the same trends

demonstrated by the rectilinear tidal ¯ows. In particular, the turbulent boundary layers extended right

up to the free surface. It was also noted that near-wall turbulent kinetic energy values were reduced

by 25% when compared with the earlier work of Davies.4

Comparisons were made between the higher-order harmonics generated by the DSM-IP code and

the results of Davies.4 It was evident that at the free surface the DSM-IP mean velocity predictions

exceeded the Davies4 predictions, again con®rming greater levels of turbulent energy in the latter

boundary layer. Furthermore, although the DSM-IP predictions along the depth of the estuary did not

agree with the results of Davies,4 it was interesting to note that the range of predicted phase angles

through the water column was similar for all models at all higher-order tidal harmonics.

Finally, to see if the discrepancies noted in the harmonic analysis were acceptable, a benchmark

simulation was conducted based on a rectilinear ¯ow driven by a high-frequency wind wave (of

period T � 8 s). The fundamental harmonic generated was consistent with a boundary condition for

U which was based on U � U1 sin�ot�.
In summary, although the key features of rectilinear tidal ¯ows can be reproduced with relatively

simple (eddy viscosity) turbulence closures, high-Reynolds-number DSM models are required in

order to obtain a detailed breakdown of the normal Reynolds stresses. Furthermore, in the case of

circular tidal ¯ow, since the Coriolis parameter enters the transport equation governing the Reynolds

stresses, it will have an effect on determining the correct levels of turbulent stresses. However, it is

very dif®cult to make a de®nitive conclusion about the point just raised, since as yet no reliable

experimental data are available for detailed comparison in order to validate the present results. We

also remark that the numerical scheme adopted here provides a robust algorithm for oscillatory ¯ow

problems which remain stable when the ¯ow reverses or relaminarizes.
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